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Modal  Interactions in an Autoparametric Vibration Absorber to 
Narrow Band Random Excitation 

Duk Sang Cho*, Chang Ki Mo, Gab Su Ban, Kwang Ho Lee 
School o f  Mechanical Engineering, Sangju National University, Sangju, 

Kyungbuk 742-711, Korea 

The main objectives of this study are to examine the random responses of a vibration absorber 

system with autoparametric coupling in the neighborhood of internal resonance subjected to 

narrow band random excitation by Gaussian closure scheme and to compare the results with 

those obtained by Monte Carlo simulation. The Monte Carlo simulation is found to support the 

main features of the nonlinear modal interaction in the neighborhood of internal resonance 

conditions. The jump phenomenon of the cantilever mode and saturation phenomenon of the 

main system are shown to occur if the excitation bandwidth is sufficiently small. 
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1. Introduction 

The linear modeling of any dynamical system is 

commonly accepted as long as the actual response 

characteristics to various types of loading show 

general agreement with follow the linear solution. 

However, under certain situations the system may 

experience certain complex characteristics that 

cannot be justified by the linear solution. These 

complex response features owe their origin to 

inherent nonlinearities in the system. When natu- 

ral frequencies, c0i, of a non-l inear  multi-degree- 

of-freedom system are commensurable or nearly 

so, i.e., when they satisfy the internal resonance 

condition ~/l~a~i=0, where /l; are integers, the 

system may possess internal resonances (modal 

interactions). Under this condition, the response 

of the system can exhibit modal interaction in the 

form of an energy exchange through non-l inear  

coupling between normal modes of the system. 
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Modal interactions of harmonically excited non-  

linear systems with internal resonance have been 

studied extensively by Minorsky (1962), Haxton 

and Barr (1972), Nayfeh and Mook (1979), and 

Lee and Hsu (1994). These systems have been 

known to exhibit complicated behaviors such as 

jump and saturation phenomena, Hopf bifurca- 

tions and a sequence of period-doubling bifurca- 

tions leading to chaos. 

Recent developments in the theory of stochastic 

processes and stochastic differential equations 

have been restricted to handling limited classes of 

dynamical systems. The theory has provided ans- 

wers to a number of issues, including stochastic 

stability, on-off intermittency, chaos, and bifurca- 

tion of multiplicative noise. However, there can 

be no general rule about the suitability of a given 

method for a particular nonlinear system. Fur- 

thermore, the application of different techniques 

to the same system may lead to different results. 

Nevertheless modal interactions of non-l inear  

multi-degree-of-freedom systems with internal 

resonance subjected to random excitation have 

been studied by many authors. For example, 

lbrahim and Roberts (1976, 1977), and Roberts 

(1980) included cubic non-l inear  terms in the 
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analysis for systems with 1 :2  internal resonance 

subjected to broadband random excitation, and 

the destabilizing effect of a damping ratio was 

observed. Later, Lee and Cho (2000) could not 

find the destabilizing effect of damping, which 

was observed by lbrahim and Roberts (1977). 

Ibrahim and Li (1988) employed closure schemes 

to examine the response statistics of a nonlinear 

three degree-of-freedom system under wide band 

random excitation and found regions of multiple 

solutions in the neighborhood of exact internal 

resonance, but the numerical solution (Li and 

lbrahim, 1990) yields only one solution depen- 

ding on the assigned initial condition. Cho and 

Lee (2000) examined the response statistics of a 

continuous system under wide band random ex- 

citation and showed that there exists no signifi- 

cant difference between two- and three-mode 

interactions. Ibrahim (1991) and Lee and Cho 

(1998) could not find saturation phenomenon for 

dynamical systems with quadratic nonlinearity 

subject to wide band random excitation. 

Many of the phenomena observed in the deter- 

ministic system, such as jump and saturation, do 

not appear in the case of the white noise ex- 

citation as stated in the above studies. The motive 

of this study arises from the conjecture that these 

phenomena may be observable as the bandwidth 

of the excitation is sufficiently decreased. Ac- 

cordingly we select an autoparametric vibration 

absorber subjected to a narrow band random 

excitation in order to investigate the influence of 

the internal resonance. The narrow band random 

process can be generated from a linear shaping 

filter excited by a white noise. Obtaining moment 

equations from the Fokker-Planck equation cor- 

responding to the coupled non-l inear  ordinary 

differential equations, we use Gaussian and non-  

Gaussian closure schemes to reduce a system of 

autonomous ordinary differential equations for 

moments but can not get any solution by the 

non-Gaussian closure scheme because the solu- 

tion experiences divergence. The response statis- 

tics by Gaussian closure is examined. The results 

obtained by Gaussian closure scheme are com- 

pared with those obtained by Monte Carlo sim- 

ulation. 

2. Equations of Motion 

Figure 1 shows the autoparametric system un- 

der narrow band random excitation F ( t ) .  The 

equations of motion of the system (Haxton and 

Barr, 1972) are, for the main mass, 

(M+ m) ~* + cKc* +klx* 
- (6/5/) m(p2+yy;) = F ( t )  

(l) 

and, for the cantilever, 

m~+czp+{ k z -  (6/5•) m.W }y 

+ (36/25l 2) my (pZ+yy;) = 0  
(2) 

where x* and y are normal coordinates corre- 

sponding to the linearized system. Introducing the 

notations 

X* Cl ~2 = C2 
X = ~  -' Y=~-' ~"- 2(M+m)tal '  2mro2' 

w~ e = / ,  R =  m r=OJlt, r - -  
- ~o~' ' M + m '  

2 k, 2 kz F(r /o , )  6 
0 ~ = ~ ,  c02=~-, U ( r ) -  (M+m)x*oJ~' P = 5  

(3) 

we have the nondimensionalized equations as 

follows : 

( k2, c2) 

F(t) l 

M 

~ / / / / / / / / / / / / / / / / / / / A  

x~=x*o- (M+m)g  
k, 

Fig. 1 Schematic diagram of an autoparametric 
absorber system 
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X " + 2 ~ X ' + X - p e R (  y,2+ yy , , )  = U(r)  

Y"  + 2 ~ r Y ' + (  r 2 - ~ e X "  ) Y 

+o=y(  y a +  yy , , )  =0  

(4a) 

where U( r )  is the response of the linear filter 

equation 

U"+ gtU'+£22 U = W(r) (4b) 

with center frequency Q and bandwidth gr, and 
dot and prime denote differentiations with respect 
to t and r, respectively. Random excitation W (r) 
is assumed to be zero mean white noise having the 
autocorrelation function 

Rva,(Z/r) =E[ W(r) W(r+Z/r) ] 
=2Da(Z/r) 

(5) 

where 2D represents the spectral density when we 
express the frequency by f ( = Q / 2 / r ) ,  and c~ (Z/r) 
is the Dirac delta function. 

Eliminating the nonlinear acceleration terms 
and neglecting the fourth and higher orders of 
nonlinear terms we have 

X" + 2 ~X'  + X + peR ( -  Ya+2r~2 YY'  + r 2 y2) 
+paR(-U(r) Y2+2~'~X' Y~+XY2)= U(r), 

Y" +2~'2rY'+ r 2 Y+--P(- YU(r) +2ffl YX '+ XY)  (6) 
8 

+p2( l -R)  (-r=Ya-2~2rYaY'+ YYa) =0, 

U" + VU'+a'a~U = W(r) 

3. M o m e n t  Equat ions  By Closure  

S c h e m e s  

Introducing the notations 

{X, Y, X', Y', U, U'} r 
={ X,, X~, X,, iV,, X~, X~ V = X  

and letting W(r )  be a formal derivative of a 

Brownian process, i.e., W ( r ) = d B ( r ) / d r ,  we 
can express Eq. (6) in the form of the It6 
stochastic equation : 

dXl= Xadr, dX2=X4dr, 

d Xa = { -2  ~, Xa - X, + Xs + peR ( X~ - 2 r h X2X, - rZ X~z ) 
+ # R (~X~- 2¢,~X,- X,~) }dr, 

dX'={-2~arX4-rZX2+~ (XaXs-2~X2Xa-X'X2) (7) 

+0a(l-R) ( ra X~ + 2 ~a r X~ X4 - X2X~4 ) } d r, 

dXs=  X6dr, 

dX6 = ( - grX6- ~2X_s) d r  + d B  (r) 

The solution process of this equation is a Markov 
process and the Fokker-Planck equation may be 

applied for the Markov vector X in the form 

~-r p(x, r ) = - ~  ~7[a i (x ,  r)p(x, r)] 
(8) 6 6 l a = 

+ w ~  ~ [ b i / x  r)p(x, r)~ 
z i=l,/=l (~Xi(~Xj 

where p(x,  r) is the joint probability density 
function, and ai (x, r) and bi.i (x, r) are the first 
and second incremental moments of the Markov 
process X ( r ) .  These are defined as follows : 

a,(x, r) =F~ ~TEl Xi(r + &) -X,(r)  [ X(r) =x }, 

(9) 

[X/r+ at) -Xj(r)]1X(a =x} 

From Eq. (7) al and bej are evaluated as follows : 

a l = X a ,  a 2 : x 4 ,  

as = - 2 ~lxa- Xl + xs + peR  (x~- 2 r~zxzx4-- r2x~) 
+ p~R (x~x~- 2 ¢lX~X~-X,Xb, 

a4 = -  2~2rx4-rax2+~(xzxS-x~xa-  2~xzxa) (10) 

+ p 2 ( l - R )  ( rZx~ + 2~arx~x4-xzx~), 

as=m, a6 = - ~'m-QZxs, 
b~=2D, all other bi~=O 

Since it is impossible to obtain the exact solution 
p(x,  r) to the Fokker-Planck equation, we ex- 
amine the system responses by means of moment 
equations. First, introducing the following nota- 
tions for nth-order moments of the system res- 
ponses, 

m~,a,ra,.~ (r) = E [ X~ X~ X~ X~ X~ Xd ] 

=ffff_Sxex +e.ep<x, dxldx2dxadx4dxsdx6 

with n ( = e t + f l + ) . + r l + t + v ) ,  we can derive a 
set of dynamic moment equations of any order by 
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mult iplying Eq. (10) by x l x ~ x a x 4 x s x 6  and in- 

tegrating by parts over the entire state space 

- - o o < x i < o o .  This procedure results in the fol- 

lowing general dynamic moment  equat ion " 

ma,a,r,,h,,v=ama_l,a,r+l,n,t,v+t~ma,a_l,r,n+l,~,v --  ~]19~a + 1,/L ~, 1,r/,t, u 

- -  epRr2?ma,a+2,r_l,~,c,v- p2R~,ma +l,O+2,r-l,rht,v 

+ epRTm~,p,r-l,~+2,,,~ + 7ma,p.r-l,~,~ + l,~ 
+ p2 Rym.,B+z,r-l,~,,+l,~-- 2 ~lTm.,~,r,~,~,~ 

z P -- r r/ma.~+~,r,~-L.~--~/m.+a,~+~,r,~-~ .... ( 1 I) 

+p~( l -R)  rZTm~,~+3,r,~-a .... 

- f l  (1 - R) ~/m~,~+Lr,,+~ .... 

P 2 p +er/m~,~+~,r,,-~,,+~,~- 7~,~/m~,~+~,.~,~-~ .... 

- 2  r~'2 r/m~,s,r,,,.~ + 2~ ~ (1 - R )  r~m.,m,r,o,,,~ 

+ ~ma,#,r,~,t-l,v+l --~2vma,#,r,~,~+l,v-1 

Equat ion  (l 1) constitutes a set of  infinite coupled 

equations.  In other words, the differential equa- 

t ion of  order n contains  moment  terms of order 

n + l  and n + 2 .  The Gauss ian  closure scheme is 

based on the assumption that the response process 

is nearly Gauss ian  and is carried out  by setting 

th i rd-  and four th-order  cumulants  to zero. The 

th i rd-  and four th-order  moments  can be ex- 

pressed in terms of lower-order  moments  (Lin 

and Cai, 1995). For  n o n - G a u s s i a n  processes the 

cumulants  of order higher than the second do not  

vanish. However, their cont r ibut ion  diminishes as 

their order increases if the process deviates slight- 

ly from Gaussian.  Thus, n o n - G a u s s i a n  closure 

is carried out by setting fifth- and sixth-order 

cumulants  to zero and expressing fifth- and 

sixth-order  moments  in terms of  lower order 

moments  (Lin and Cai, 1995). 

For  Gauss ian  closure we can obta in  a system 

of 27 differential equat ions which consist of  6 

equat ions for the first order moments  and 21 

equat ions for the second order moments.  For  

n o n - G a u s s i a n  closure we can obta in  a system of 

209 differential equat ions which consist of  6 

equat ions for the first order moments,  21 equa- 

t ions for the second order moments,  56 equat ions 

for the third order moments,  and 126 equat ions 

for the fourth order moments.  The systems are 

expressed as fol lows:  

m ' = f  (m), m ~ R  z7 for Gaussian closure 
(12) 

m ~ R  ~ for non-Gaussian closure, 

where m = {  mx,0,0.0,o.o, mo.l.o,o.o.o, --', mo,0,0,0,m or 

m0.o.m,m} r is the moment  vector and f ( m ) =  

{ A ( m ) ,  A(m), "", f z / m )  or A09(m)} r is the 

vector field of the system. 

We can obta in  the equi l ibr ium solut ion /no 

from 

f ( m o )  ----0 (13) 

In order to investigate the stability of the equil ib-  

rium solution,  we let 

m----too+Sin 

where 8 m  is a small  disturbance. The disturbance 

8 m  satisfies, to the first order 

, a t '  
c~m = ~ -  . . == t im  (14) 

If real parts of  all eigenvalues of  the Jacobian 

matrix are negative, the solut ion mo is considered 

asymptotical ly stable. 

From Eq. (13) we can see that the system (12) 

for Gaussian closure has the fo l lowing  equil ibri-  

um solut ion 

D [2 ~i +2 ~Ir2~',+ ~'(O2+4~'?] 
mz°'°'°'°'° = E [XZ] - 2 ~Y22 ~IP ' 

mo.oa.o.o.o_=E [X,2] = D(2~I+ ~) 

D 
m0.0,0.0.2.0=E[ U 2] = ~TQ 2 , 

2 D 
m0.0.0.0.0.2-E[ U'  ] = ~ ,  

D (1 + ~/rz-~2+2 ~r~'~) (15) 
mLo.o.o.Lo=_E[XU] =. ~£22p 

D(~+2~'1) 
mL°.°.°.°.l= E[  XU']  - ¢rp ' 

D(~r+2~i) 
mo.o.,.oa.o= E [ X '  U ] ~ p  

D(1-Q2)  
mo.o.Lo.o.,= E [ X '  U'] = ~.p , 

P =  1 + ~ ' z+~4+2 {~', ( I +Q2) _2f2z (1 _ 2 ~12) 

and all other moments  are zero. This equi l ibr ium 

solution implies that the autoparametric  vibra- 

t ion absorber undergoes the main  system motion 
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(X)  with no cantilever motion ( Y = 0 ) ,  in other 

words, the motion is unimodal.  

4, Monte  Carlo Simulation 

than 1/(2fmax). 

5. Numerica l  Results  

Monte Carlo simulation is carried out to ex- 

amine the validity of  the satistical closure sc- 

hemes. The response statistics are estimated by 

numerically integrating the non-l inear  coupled 

equations (4) for a large number of sample ex- 

citation records. In the present study 400 records 

are found to be adequate to give numerical con- 

vergence of  the results. Each record of the ran- 

dom excitation W ( r )  with duration r=4000  is 

generated by sampling a sequence of 16,000 ran- 

dom numbers in order to prevent unacceptable 

frequency distortion in the record as follows 

(Shinozuka and Deodatis, 1991): 

W(r) =~v/2(aDj)(fs+l-fs) s i n ( 2 x ~  r+~bs) (16) 

where 4Ds are one-sided spectral density, f s  are 

random frequency, independent and uniformly 

distributed in ascending order [0, 2 Hz], and ~bs 

are random phase angles, independent and 

uniformly distributed on the interval [0, 2zr]. The 

sampling time stepsize(Mr) is chosen to be less 

First, we solve the Jacobian matrix in equation 

(14) to examine the stability of the system. When 

the solution becomes unstable, we investigate the 

long-term behavior of the moments by integrating 

numerically the ordinary differential equation 

(12). Unfortunately, we can not get any solution 

by the non-Gaussian closure scheme because the 

solution experiences divergence. Figure 2 shows 

how the mean square values of the steady-state 

motion depend on the center frequency z"2 of the 

linear filter when bandwidth ~" is equal to 

0.001 and 0.015. In Fig. 2(a) and 2(b) ,  two 

curves beyond the internal resonance region ($2 

1) predicted by the Gaussian closure scheme cor- 

respond to the equilibrium solution (15). The 

corresponding response is a stationary process 

because the mean square values are independent 

of r. The results indicating that the main system 

motion excited directly does not encourage the 

cantilever motion and the responses by a station- 

ary excitation are stationary, coincide with the 

response characteristics of linear systems. In the 
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t 
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1.1 
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0.50 

0.00 

-050 
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-0.02 
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0.00 
X 

-0,_50 
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'~ 0.00 
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201~0 400~ 
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response according to Monte Carlo simula- 
tion for {~'l, ~, R, e, r ,  ~ ,  ,.Q, E[U~]  = 
{0.015, 0.015, 0.2, 2, 0.5, 0.015, 0.965, 0.00001 } 

internal  resonance region the results show that the 

energy has been transferred from the main  system 

motion excited directly to the cantilever mot ion 

that is not excited directly. 

According to the stability analysis, the equil ib-  

rium solution loses the stability at Q = A  and 

Q = A "  by Hopf  bifurcations which occur when 

the Jacobian matrix of  Eq. (14) has a simple pair 

of  pure imaginary eigenvalues and no other 

eigenvalues with zero real parts. In addit ion,  in 

Fig. 2(a) the equi l ibr ium solut ion loses the sta- 

bility at f 2 = B  and f 2 = B '  according to the 

results of  numerical  integration. Since B < , Q < A  

and A ' < f 2 < B '  are the regions where mult iple 

solutions exist, the system shows four j u m p s :  

upward jumps  at A and A ' ,  and downward  

jumps  at B and B' .  When the center frequency f2 
of the filter is increased, the upward j u m p  at A 

occurs and the downward  j u m p  at B '  occurs. On 

the contrary, as the center frequency ,(2 is de- 

creased the upward j u m p  at A '  occurs and the 

0.55 

"- 0.50 

Fig.  5 

W = 0 . 0 0 I  

. . . . . . . . . .  W = O . O I 5  

. . . . .  w=o.o4 ,6- -.~ : ' /  

• °* . 

/ / i "  

t :" " "  " j 
\ /  . . . /  
~" ... ' /  

0.45 , 
0.9 1.0 1.1 

f~ 

Stability boundaries predicted by Gaussian 
closure according to ~r in r - - Q  plane for 
{ g, ~, R, ~, E [ U 2 ] } = {  0.015, 0.015, 0.2, 2, 
0.00001 } 

downward  jump  at B occurs. 
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As shown in the figures it can be seen that 

responses estimated by Monte Carlo simulation 

are in good agreement with those predicted by 

Gaussian closure. In Fig. 2(a) ,  jumps estimated 

by Monte Carlo simulation exist at narrow ranges 

(C and C') as the cantilever motion Y ( r )  shown 

in Fig. 3. On the other hand, Fig. 2 (b) reveals the 

disappearance of jump phenomenon as shown in 

Fig. 4. Figure 5 shows the stability boundaries 

predicted by the Gaussian closure scheme ac- 

cording to ~ in 12-- r planes. 

Figure 6 presents limits of  mean square dis- 

placements as functions of the mean square ex- 

citation E [ U  2] ( = D / ~ I 2  ~) when bandwidth 

is equal to 0.001 and 0.015. For  the region of 

mean square excitation below the Hopf  bifurca- 

tion point, the mean square values of  the main 

system motion excited directly increase linearly as 

E [ U Z ] ,  while the mean square values of the 

cantilever motion remain at zero. In other words, 

the system response shows the response charac- 

teristics of  a linear system when E [ U  2] exists 
below the Hopf  bifurcation point. For  the region 

of mean square excitation above the Hopf  bifurca- 

tion point, the limits of mean square values of the 

main system motion is saturated when ~'=0.001. 

On the other hand, the limits of  mean square 

values of the cantilever motion increase as E 

[ U2]. Thus there exists saturation, which implies 

a phenomenon in which the motion excited di- 

rectly stops increasing when the excitation level 

reaches a critical value. But as the bandwidth 

increases from ~'=0.001 to ~'=0.015, the 

saturation phenomenon disappears. The Gaussian 

closure predicts the bifurcation of the cantilever 

motion prior to that point predicted by the Monte 

Carlo simulation. 

6. Conclusions  

In order to investigate the influences of the 

internal resonance on the system responses of a 

two-degree-of-freedom system with a narrow 

band random excitation, we examined an auto- 

parametric vibration absorber with a narrow 

band random excitation to the main mass. The 

narrow band random process is generated from a 
linear shaping filter excited by a white noise. For  

sufficiently small bandwidth of the linear shaping 

filter, the jump phenomenon of the cantilever 

mode and the saturation phenomenon of  the main 

system are predicted by both the analysis and 

numerical simulation. The saturation pheno- 

menon occurs over a finite range of the internal 
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detuning parameter. But as the bandwidth in- 
creases the jump and saturation phenomena 
disappear. The Gaussian closure solution predicts 
the bifurcation of the cantilever motion to occur 
at relatively lower excitation level than the Monte 
Carlo simulation. 
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